Корреляционный анализ

Корреляционный анализ (КА) — это статистический инструмент, позволяющий установить связь между двумя различными переменными, а также оценить, насколько сильна взаимосвязь между этими переменными. Такой анализ применим исключительно для количественных данных. Исчисляется с помощью коэффициента корреляции, также известного как коэффициент Пирсона.

Коэффициент корреляции Пирсона — это ковариация двух переменных, деленная на произведение их стандартных отклонений. Коэффициент может иметь значение в диапазоне от (+1) до (-1), которое отражает степень взаимосвязи между переменными. 

Результаты корреляционного анализа

Если результат корреляционного анализа положительный, то взаимосвязь двух переменных прямо пропорциональная. Это означает, что при увеличении одной переменной, вторая будет также увеличиваться. Как правило, такой результат принято называть “позитивной корреляцией”.

Если результат корреляционного анализа отрицательный, то взаимосвязь двух переменных обратно пропорциональная. Это означает, что при увеличении одной переменной, вторая будет уменьшаться. Такой эффект называется “отрицательной корреляцией”. 

Таким образом, чем ближе значение КА к (+1) или (-1), тем сильнее взаимосвязь между двумя переменными. Соответственно, если результат анализа стремится к нулю, то взаимосвязь между двумя переменными отсутствует. Статистически значимыми принято считать значения, результат которых выше 0,5 в обоих направлениях. 

Корреляционный анализ следует использовать, когда вы считаете, что есть связь между двумя переменными и вы хотите в этом убедиться. Также, КА можно использовать между несколькими переменными, проводя последовательную оценку, для определения наибольшей взаимосвязи. 

Применение корреляционного анализа

Применение КА широко распространено, поскольку он позволяет выявить неожиданные взаимосвязи, которые позволяют делать более глубокий анализ и использовать полученные результаты для извлечения выгоды. Анализ полезен при тестировании гипотез ценообразования и продаж, развития стратегии и продуктового портфеля. 

Например, корреляционный анализ поможет ответить на такие вопросы:

  1. Влияет ли скидка на увеличение продаж?
  2. Влияет ли уменьшение цены на увеличение продаж?
  3. Являются ли лояльные клиенты самыми прибыльными?

Самый простой пример: такие факторы, как жаркая погода и продажи мороженного можно подвергнуть корреляционному анализу. Логично сделать заключение, что жаркая погода является причиной того, что люди покупают больше мороженного. При этом, жаркая погода может стать причиной увеличения продаж хлора для бассейнов. Но при этом продажа мороженного никак не коррелируется с продажей хлора. 

Более того, корреляционный анализ применяется в рамках концепции Lean SixSig­ma для поиска коренных причин проблемы и их взаимного влияния друг на друга. 

Корреляционный анализ: формула 

Порядок расчета коэффициента корреляции:

  1. Собрать данные исследуемых переменных — “X” и “Y”.
  2. Сгруппировать данные двух исследуемых переменных в столбцы (см. пример ниже).
  3. Добавить столбцы “ХХ”, “XY”, “YY”.
  4. Провести расчеты для столбцов (перемножение данных: Х*Х; Х*У; У*У).
  5. Просуммировать данные столбцов. 
  6. Внести полученные данные в формул расчета. 

Пример расчета коэффициента корреляции

Рассмотрим пример взаимосвязи цены и проданных единиц продукции, потому что самое популярное предположение — чем ниже цена, тем больше количество проданных единиц продукции. Учитывая, важность получаемой выручки, проверим данную гипотезу по формуле, которая указана выше. В таблице представлена условная цена и количество проданных единиц продукции по заданной цене. Рассчитаем последовательно остальные данные необходимые для коэффициента корреляции.

корреляционный анализ в Excel
корреляционный анализ

Полученные расчеты используем в формуле и получаем значение корреляции, равное (-0,412). Данный результат будет означать, что взаимосвязь между ценой и количеством проданных единиц товара не существенная. 

коэффициент корреляции пример

Корреляционный анализ в MS Excel

Рассчитаем коэффициент корреляции для вышеприведенного примера в MS Excel. Для это необходимо занести два столбца с переменными данными.

корреляционный анализ в excel

Далее, открываем меню “Формулы”, нажимаем кнопку “Вставить функцию” и через мастера функций находим функцию PEARSON.

корреляционный анализ в excel

Выделяем область данных для полей “Массив1” и “Массив 2”, то есть столбец “Х” и столбец “У”. В левом нижнем углу видим результат, равный ( ‑0,412), что полностью соответствует вышеприведенным расчетам.

Политика конфиденциальности

Наш сайт использует файлы cookies, чтобы улучшить работу и повысить эффективность сайта. Продолжая работу с сайтом, вы соглашаетесь с использованием нами cookies и политикой конфиденциальности.

Принять